
User Defined Classes

CS100 2017F

Why Classes?

• Sometimes it is natural to bundle data and
behaviors together (technical term:
encapsulation)

• Python supports this bundling by allowing the
programmer to define a class (like, for example,
the str class)

• A class may have arbitrarily many instances
– this allows all members of the class to have uniform

characteristics
– for example, the class Dog might have instances fido,

barker, and scrawny

Example: The Point Class
• We can define a class that describes points in

the plane with this code
• class is a Python keyword (required)

• Point is the name of the class (by convention, it is
capitalized)

• the colon (:) introduces the indented body of the class
definition

• the first thing in the class definition should be a short
docstring

class Point:

 ''' Represents a point in a Euclidean plane '''

Creating a Point
• A class typically has a method (function)

named __init__ that is called to create an
object in the class

• the method name __init__ by convention has two
leading and and two trailing underscores to distinguish
it from other identifiers

• self refers to the object created. The other parameters
define the initial state of the object

class Point:

 ''' Represents a point in a Euclidean plane '''

 def __init__(self, x_coor, y_coor):

 self.x = x_coor

 self.y = y_coor

Creating a Module for a Class
• Though it is not required, a class definition is

usually saved in a separate .py file that can be
imported as a module

• e.g., the class Point would be saved in a file named point.py

• the point module could then be imported and used to create
points (think turtle module and turtle.Turtle())

• the module may contain related classes (Turtle and Screen)

• methods and data are accessed by the dot (.) operator

>>> import point

>>> point.Point

<class 'point.Point'>

>>> center = point.Point(0,0)

>>> center.x

0

Creating a Point

• Additional behaviors for a point object can be
defined by adding methods to the class

class Point:

 ''' Represent a point in a Euclidean plane '''

 def __init__(self, x_coor, y_coor):

 self.x = x_coor

 self.y = y_coor

 def coordinates(self):

 ''' Return a tuple of the x,y coordinates of a point '''

 return (self.x, self.y)

 def move_to(self, x_coor, y_coor):

 ''' Assign new coordinates to a point '''

 self.x = x_coor

 self.y = y_coor

Extend the Point Class
• Write a method named move that moves a point relative to

its current location (follow the pattern of the move_to
method)

• Write a method named distance_to that calculates the
distance between the current point and some other point.

• The code below shows correct input and output for these
methods
 >>> import point

>>> center = point.Point(0,0)

>>> point_a = point.Point(1,1)

>>> center.distance_to(point_a)

1.4142135623730951

>>> point_a.move(5,3)

>>> point_a.coordinates()

(6, 4)

Class Data
• A class may have data associated with it that

applies to every object in the class

• For example, the dimension of every point is 0.
This should be defined inside the class, but
outside any method.

 class Point:

 ''' Represents a point in a Euclidean plane '''

 dimension = 0

>>> import point

>>> a_point = point.Point(2,2)

>>> point.Point.dimension

0

>>> a_point.dimension

0

Sugar Knows Frisbee

