User Defined Classes

CS100 2017F

Why Classes?

 Sometimes it is natural to bundle data and
behaviors together (technical term:
encapsulation)

* Python supports this bundling by allowing the
programmer to define a class (like, for example,
the str class)

* A class may have arbitrarily many instances
— this allows all members of the class to have uniform
characteristics

— for example, the class Dog might have instances fido,
barker, and scrawny

Example: The Point Class

 We can define a class that describes points in
the plane with this code

* class is a Python keyword (required)

* Point is the name of the class (by convention, it is
capitalized)

 the colon (:) introduces the indented body of the class
definition

* the first thing in the class definition should be a short
docstring

class Point:
'''" Represents a point in a Euclidean plane

L |

Creating a Point

* A class typically has a method (function)
named _init__ that is called to create an
object in the class

* the method name init by convention has two

leading and and two trailing underscores to distinguish
it from other identifiers

- self refers to the object created. The other parameters
define the initial state of the object

class Point:

'''" Represents a point in a Euclidean plane '''

def init (self, x coor, y coor):
self.x = x coor
self.y = y coor

Creating a Module for a Class

 Though it is not required, a class definition is
usually saved in a separate .py file that can be
imported as a module

* e.g., the class Point would be saved in a file named point.py

* the point module could then be imported and used to create
points (think turtle module and turtle.Turtle())

* the module may contain related classes (Turtle and Screen)
 methods and data are accessed by the dot (.) operator

>>> Iimport point

>>> point.Point

<class 'point.Point'>

>>> center = point.Point (0,0)
>>> center.x

0

Creating a Point

e Additional behaviors for a point object can be
defined by adding methods to the class

class Point:
''!" Represent a point in a Euclidean plane '''

def init (self, x coor, y cooOr):
self.x = x coor
self.y = y coor

def coordinates (self):

'''" Return a tuple of the x,y coordinates of a point '''
return (self.x, self.y)

def move to(self, x coor, y cooOr):
''' Assign new coordinates to a point '''
self.x X Coor
self.y y Ccoor

Extend the Point Class

* Write a method named move that moves a point relative to
its current location (follow the pattern of the move to
method)

* Write a method named distance to that calculates the
distance between the current point and some other point.

 The code below shows correct input and output for these
methods

>>> 1mport poilnt

>>> center = point.Point (0,0)
>>> point a = point.Point(1l,1)
>>> center.distance to(point a)
1.4142135623730951

>>> point a.move (5, 3)

>>> point a.coordinates|()

(6, 4)

Class Data

* A class may have data associated with it that
applies to every object in the class

 For example, the dimension of every point is O.
This should be defined inside the class, but
outside any method.

class Point:
'''" Represents a point in a Euclidean plane ''"'
dimension = 0

>>> 1mport point
>>> a point = point.Point(Z,2)
>>> point.Point.dimension

>>> a point.dimension

Sugar Knows Frisbee

